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In trod uction.
T^hc behaviour of systems having numerous degrees of freedom 
1 and endowed with electric charges presents problems of high 
complexity. Although many of the properties of systems of this 
kind may be explained within classical physics, a more con­
sistent description was obtained only after the introduction of 
quantum mechanics.

An example studied with particular care is the so-called 
electron gas. We shall not attempt here a historical survey of 
the viewpoints and mathematical treatments of electron gases. 
It may only be recalled that a striking simplification was ob­
tained when Sommerfeld introduced the idea of a gas of free 
electrons, subject only to the exclusion principle, but uninfluenced 
by the mutual electric forces. In this way, an approximate account 
was given of many of the properties characteristic of metallic 
electrons. One of the major results was the smallness of the 
thermal energy of the gas at usual temperatures. The model 
could be refined so as to allow for periodic static potentials, 
which led to a separation of the electronic states into energy 
bands and to an explanation of essential properties of the dif­
ferent types of solids. At the same time the free electron picture, 
as applied in the Thomas-Fermi model, could account for pro­
perties of atoms in an averaged manner.

It was thus apparent that the Sommerfeld theory in several 
respects closely represented the properties of, e.g., valence 
electrons in metals. Still, it seemed difficult to give a direct 
justification of the model on the basis of more rigorous treatments, 
because the interaction appeared to have a dominating influence 
on the behaviour of the electrons. It was not easy to foresee the 
limitations of the theory, and in problems where it was valid in 
the first approximation ambiguities arose in the more detailed 
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treatments. This was the more unsatisfactory since some pheno­
mena, as superconductivity, apparently defied any explanation 
within the simple theory of metals.

An interesting attempt to describe the dynamics of an electron 
gas in a systematic way, with inclusion of the interaction between 
the particles, was made by Bloch (1933, 1934) on the basis of 
the Thomas-Fermi model. Although in the treatment further 
simplifications—introduction of hydrodynamic concepts—were 
made, it was possible to arrive at a number of simple results 
as regards the modes of excitation of the system. More recently, 
Tomonaga (1930) presented a thorough discussion of the be­
haviour of a one-dimensional gas, again for fields varying slowly 
in space. Further, Boiim and collaborators (1949—1953) have 
published extensive studies of many problems in the three- 
dimensional case (see especially Boiim and Pines, 1953). The 
treatments by Bloch, Tomonaga, and Boiim indicate the great 
modification suffered by the system of originally free particles 
when the interaction is introduced.

This great change in the properties is—as empirically evident— 
mainly a change in the electromagnetic properties of the system. 
As in the treatment by Bohm, the interest therefore in the first 
instance centers on the behaviour of the electromagnetic field. 
However, we shall here make the further step of writing the 
equations of motion of the total system as equations for the 
electromagnetic field only. One would expect this to be possible, 
since the behaviour of the particles is revealed only through the 
field to which they give rise. The motion of a particle is then 
no longer determined by the interaction with numerous other 
particles, but only by the field. This elimination of the particles 
in the description of the properties of a medium is nothing but 
the idea at the basis of Maxwell’s field equations in matter. 'The 
same idea is found in the static descriptions of Thomas and 
Fermi, and of Hartree. From the present point of view it is 
less adequate to introduce elaborations of these models of the 
kind contained in determinant wave functions, or in the descrip­
tion by correlations, where one tries to include energies of order 
e2, or higher, by calculating the effect of interaction between 
two or more particles. The difficulties in a correlation description 
was evidenced in calculations by Heisenrerg (1947), where 
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divergencies appeared for long wavelengths. Such kinds of 
approach become more consistent if one introduces a screened 
Coulomb interaction between the particles (Pines, 1953; Lands­
berg, 1949; Wohlfarth, 1950).

We should now make a more definite statement as to the 
field entering in our description: By the classical field in the 
substance we mean always the total field acting on and eventually 
due to classical, or external, charges. We wish to derive the 
corresponding field equations, which turn out to be of the type 
of Maxwell’s field equations in matter. This attitude might seem 
to require a detailed justification because fluctuations could 
destroy the uniqueness of the description. However, the classical 
field equations define, on the contrary, what one understands 
by a large system of interacting particles. Thus, it is im­
portant to realize that all fluctuations occurring are contained 
in the present description, simply because it gives the classical 
equations of motion of the system. A quantization of the equations 
may be performed by applying the methods familiar from field 
theory. With such methods it is possible to derive the fluctuations 
in the system, on similar lines as followed by Bloch (1934) in 
his treatment of the Thomas-Fermi gas. In the following, we shall 
try to amplify these brief remarks, both as regards which is the 
field considered and as to the uniqueness of the field equations.

Accepting the above, an immediate task is to find what 
simplifications and modifications can result when the dynamical 
properties are contained in field equations for the electromagnetic 
field. Now, even though it can be difficult to derive more exact 
field equations on explicit form, one may be able to find easily 
the type of the equations and to give approximate estimates in 
various limiting cases. One can then, with confidence, attempt 
an approach to the field equations both from a theoretical and 
an empirical point of view, and consider the general conse­
quences of the structure of the equations. Of course, at the same 
time as one has an equation for the electromagnetic field, an 
equation for the particle field will be obtained (cf. Appendix). 
The latter equation is of particular interest, for instance, in scat­
tering phenomena. For the present, we are concerned mainly 
with the electromagnetic field, hut one has the choice of developing 
with higher accuracy the description of either of the two fields.
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It. will be useful, then, to discuss general field equations of 
classical type. We limit the treatment to linear field equations, 
and define these by the dielectric operators of the field. Linear 
field equations will seem to cover a wide class of phenomena, 
but in some cases the linear approximation is not sufficient. 
Terms of higher order appear in, e.g., the Thomas-Fermi atomic 
model and phenomena as those studied by Ali'vén (1950) and 
his school.

In the derivations, in the present paper, of classical linear 
field equations for a gas of charged particles several further 
approximations are made. We compute at first the dielectric 
constants to first order in e2, starting from the picture of a 
free gas of particles. One gets then a number of well-known 
results regarding the properties of free gases, but finds essential 
improvements in some cases. When the computations are carried 
out to higher order, one encounters further corrections to the 
familiar descriptions.*  The first order equations contain the main 
features of the linear field equations of the system. In some cases 
they can represent the exact solution and yet contain a by no 
means small polarization (cf. § 5, p. 48). From such first order 
treatment one sees perhaps best that the field equation concerns 
the total classical field, since the particle motions—and thus the 
polarization—are determined only by this field.

As regards the question of the justification of the approximation 
method applied in the following, where one starts from a free 
gas and computes the dielectric constant only to first order in 
e2, it would seem most appropriate to calculate the linear field 
equations to a high, or infinite, order and make a comparison 
with the first order treatment. Employing the powerful technique 
of quantum field theory, one can indeed get expressions for the 
linear electromagnetic and particle field equations. We use a 
more modest approach, and discuss the behaviour of one electron 
moving in the field calculated to second order. The electron then

* By a computation to higher order we understand a procedure of iteration 
applied only in deriving the field equations; when these are obtained we do not 
attempt approximations at a later stage.

In a sense the accuracy of the calculation to first order is dependent on e2 
being small. We can in fact form one dimensionless quantity from e2 and the 
density of the gas, o. In the following we use the quantity /2 = [me2/h2 (3 rpp)3]. 
The value of /2 must determine the properties of the gas. The free particle picture 
is valid if X2 is small compared to 1, as in dense gases. 
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interacts with itself, and we consider in some detail the effect 
of the damping of motion and of the self-energy. As to the partic­
ular example of a one-dimensional gas the present perturbation 
method, applicable to all wavelengths of the field, gives in the 
region of long wavelengths precisely the equations deduced by 
Tomo n a g a ( 1950).

We have not yet commented on the crucial question of the 
connection with statistical mechanics. In spite of the circum­
stance that we are concerned, basically, with a conservative 
system, the field turns out to be of non-conservative type and 
we encounter dissipation effects of peculiar kind. Thus, ab­
sorption of energy and momentum occurs via processes not 
unlike those resulting from viscosity in a liquid. The absorption 
effect appears as a finite imaginary operator in the equations 
for the retarded field. It may be said to derive from an extreme 
in entropy increase and trend towards statistical equilibrium, 
and must result in a small thermal excitation of the system. Just 
the former circumstance implies an unambiguous classical state 
—and behaviour in time—of the system, where mechanical con­
siderations alone could not suffice. Incidentally, we have there­
fore employed the word ‘classical’ in the simple sense: with 
neglect of statistical or quantum mechanical fluctuations. The 
statistical fluctuations about the average absorption can be 
obtained in a straightforward manner from correspondence 
arguments.

In the following only some of the above general questions 
are treated in detail. First, in § 1, the field equations in matter 
are introduced. The equations holding for a nearly free gas are 
computed classically in § 2, and by quantum mechanical treat­
ment of the particles in § 3. In the static limit these calculations 
are in line with the method introduced by (). Klein, whose 
point of view was similar to the present one (Klein, 1945; Lind- 
iiard, 1946). By way of illustration we consider in § 4 the ap­
plication to stopping problems, and self-energy, for charged 
particles passing through matter (cf. also Appendix). The im­
provement of the free electron picture is discussed in § 5. In a 
subsequent paper*  will be treated the connection between the 
thermal properties and the field equations, and also the absorp-

* To appear in Dan. Mat. Fys. Medd., and in the following referred to as II. 
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tion and reflection of a transverse wave by a metallic surface (cf. 
moreover Lindhard, 1953).

Before entering on the more formal treatment we may add 
a few words as to the general formulation given here, and con­
cerning the results of a discussion of the free electron gas. It 
might perhaps seem that the free gas is a quite specialized 
example, but it should be appreciated, first, that its applicability 
to atomic systems containing many electrons is quite wide. The 
proper methods for a treatment of many-particle systems should 
just derive from an understanding of the simple example of a 
free gas.

Second, the electron gas is a system in which the forces be­
tween the particles are known. If it is attempted to discuss systems 
where the forces are less well understood, as in an assembly 
of nucleons, a detailed description of the simpler case may be 
of considerable help. It is of special interest that a system of 
interacting particles exhibits several typical properties, for 
which the character of the forces is usually not decisive.

One may here particularly mention the connection between 
the independent-particle model and the collective model of 
atomic nuclei. These two cases we meet already for electronic 
systems, which in numerous respects show an extraordinary 
likeness to a nucleus. The collective and independent-particle 
features are intimately connected in the present field equations, 
and though the total effect of the particles, as expressed by the 
field polarization, can be very large, yet each particle may move 
nearly as if it were free (in the more general case, the particles 
have no longer free particle equations, but remain independent). 
A considerable simplification results since the two descriptions do 
not appear as entirely different cases, but may be treated as one.

§ 1. Field equations in matter.

In this paragraph are described the more general features of 
electromagnetic field equations in matter, as a preliminary to the 
calculations in the following. One of the questions is, simply, the 
introduction of a suitable notation and terminology; we choose 
to formulate the field equations by means of the dielectric con- 
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stants of the field. Actual expressions for dielectric constants are 
to be found in § 2 and § 3. Further, the discussion here is meant 
to illustrate characteristic phenomena, as energy dissipation, that 
are contained in the field equations.

It is desirable to use a description similar to that of the Max­
well equations in matter. In these equations, the properties of a 
substance are determined by the values of the dielectric constant 
£, the permeability zz, and the conductivity o’. Expanding the 
field in harmonic components in time, the quantities e and /z may 
be considered as functions of the frequency co; the conductivity 
o can be included in the dielectric constant and determines then
the imaginary part of e. One distinguishes, on the one hand, 
between the general equations which do not contain the properties 
of the medium, 

div D = rot E — — 1 dB
col’

div 5 = 0 rot H = 1 cD
c ot

(1.1)

and, on the other hand, the more special equations where the 
electromagnetic properties enter directly,

B Çr, co) — /lc (co) ■ H Cr, co), D Çr, co) — e (co) ■ E (T, co), (1.2) 

B (r, co), etc., being field components with time dependence 
exp(—icot). While the equations (1.1) are quite general, the 
assumption (1.2) leads directly to linear field equations.

Using a description of the kind (1.2), one is able to give a 
satisfactory account of many properties of matter. Still, for a 
number of phenomena not only the time variation of the field, 
as contained in (1.2), but even its variation in space will have 
a decisive influence on the values of e and /z. Moreover, the 
general interpretation of (1.2) and the transcription of the Maxwell 
equations into equations for the electromagnetic potentials re­
main ambiguous if one assumes that e and « are functions only 
of co. We shall find, however, that when (1.2) is generalized so 
as to take into account the spatial variation of the fields, such 
ambiguities disappear.

We may now discuss the general form of linear field equations 
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in malter, without immediately trying to find the connection with 
the Maxwell equations (1.1) and (1.2). Let us consider the 
microscopic behaviour of an electromagnetic held in an extended 
medium. We may for the present regard the medium as infinite, 
isotropic, and homogeneous, the latter even over minute regions 
in space, and with properties independent of time. As will be 
discussed below, we shall be concerned with the classical, or 
average, field and al first look apart from fluctuations. In the 
case under consideration, it will be convenient to describe the 
fields by their Fourier components in space and time. Indeed, 
due to the invariance towards displacements in the medium, each 
Fourier component of the field must be proportional to the same 
Fourier component of the sources. The factor of proportionality 
will be some function depending both on the wave vector and 
frequency of the component in question. Considering, in the^first 
instance, the transverse (divergence-free) part of the field we may 
express this circumstance by introducing a function which we 
shall call the transverse dielectric constant. The reasons for this 
particular formulation and the connection with the Maxwell 
equations in matter will appear presently. We thus get for the 
transverse part of the vector potential

h2 - ~ e'j ^(i, «) = jS (k, <o), (1.3)

where etr = etr (k , co) is a function of the wave vector k and 

the frequency co. The connection between A (r , /) and A (k, co) 

is given by A (r , t) = A (k , co) ■ exp (ik • r — icot), and in the 

same way j\)(k, co) is a Fourier component of the transverse 
current of the sources of the field. The transverse character of 

the field is expressed by k-Atr(k,co) = 0, so that Atr (k , co) = 

A (À , co) — k (k ■ A (k , co))/k2, and similarly for (k , co). On 
account of the explicit appearance of the sources equation (1.3) 
describes a case of forced vibrations of the medium; the solution 
of the homogeneous equation is discussed more closely in II.

We note that, since A and j0 are real functions in space and 
• • • —time, their Fourier components (—k,— co) must be complex con-
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jugate of the components (k, co), which implies that e (—k, — (o) = 
£ (k,M). The dielectric constants in the following will
generally be of the type Etr (k,— co) = Etr*(k,w),  as is char­
acteristic for retarded and advanced field equations. We shall 
always be concerned with the retarded dielectric constants, i. e. 
retarded field equations, except when expressly otherwise stated.

For the electric potential we can choose to write, in a similar 
way, introducing a new function which we call the longitudinal 
dielectric constant,

£? • k2 & (k, co) = 4 % q0 (k, co), (1-4)

where the notation is as in (1.3) and e1 = e1 (k, co) depends on 
the two variables k and co. The quantity Q0(k, w) on the right 
is the Fourier component of the source density of electric charge. 
When the description (1.4) is used, it is assumed that the gauge 
is chosen such that the longitudinal vector potential vanishes. 
It may perhaps already here be stressed that, for fields in material 
substances, one has directly given a natural system of reference 
and it is often not convenient to write the field equations in an 
invariant manner.

The fields derived from the above potentials are

1 Q A
E = — grad 0------ , B = rot A (1-5)

and they are the true classical fields acting at a space-time 
point (r, /) in the medium. We consider the retarded fi’s so that 
the fields in (1.5) are the retarded fields. The letters E and B 
are chosen for these quantities because they can be interpreted 
as the electric field and the magnetic induction of the Maxwell 
equations, as we shall now show. We have accounted for the 
properties of the medium by the two functions Eir and e1, instead 
of £ and ft in the equations (1.2). The connection between the 
two formulations is apparent when a function it (k, co) is de­
fined by

= ÿ <16> 
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for then equation (1.3) becomes, introducing a dielectric constant 
£, equal to the longitudinal one, £,

(1.7)

With this notation one can introduce a magnetic field, H, and 
an electric displacement, D, from the equations

H(k, o>) = 1 — • B (Î, co)
JU. (7C, co)

D (k, co) — £ (k, co) ■ E (k, co).
(1-8)

One then obtains the Maxwell equations (1.1) in space and time 

for the quantities B (r, l), H (~r, t), E (r, t) and I) (r, t). This 
formulation of the field equations, where //, H and B are intro­
duced, is often convenient. But in the following we shall usually 
describe the behaviour of the medium by using only £<r and el, 
solving the equations (1.3) and (1.4) with respect to the potentials. 
In this connection it may also be emphasized that //, according 
to (1.6), is determined unambiguously only when el is known. 
Thus, if one treats exclusively the transverse field it can be con­
venient to interpret the Maxwell equations (1.8) in the manner 
that the permeability is 1, or H = B, and the dielectric constant 
is the transverse dielectric constant.

The permeability and the dielectric constants defined above 
should be considered as complex functions; their imaginary parts 
are closely connected with the energy absorption by the medium. 
We note in particular that the connection between the Fourier 
components of the induced transverse and longitudinal current 
densities and total electric fields are given by

(1.9)

the equation holding, as indicated, for the transverse and long­
itudinal fields separately. Equation (1.9) leads us to define 
transverse and longitudinal conductivities as, respectively,
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a) í ttr . \
a^1 (k,co) = — Im (Á\ æ)—1, (1-10)

4 7C

where Im (,r) denotes the imaginary part of x. The real parts 
of the equations (1.10) correspond to the polarizabilities of the 
medium.

We now turn to considerations of a more general kind, based 
only on the Maxwell equations (1.1); we do this primarily in 
order to give an account of the phenomenon of absorption by 
the medium. The absorption does not express a lack of con­
servation of energy of the total system. Indeed, we shall derive 
it in § 2 and § 3 from conservative equations of motion. The 
absorption means only that a distribution takes place over a large 
number of degrees of freedom, and the corresponding motion 
cannot be regained as an ordered motion. In a more detailed 
description, the absorption by the medium can be described by 
thermodynamical and statistical mechanical parameters, and 
observed as, e. g., a rise in temperature of the system.

The conservation equations for energy and momentum are 
derived in the familiar manner from the Maxwell equations (1.1). 
We shall write them down in full so as to show their contents 
and interpretation in descriptions of the present kind. We find 
from (1.1) the energy equation

— • 7T- (B • E+ H • B) —t div (E X
8 ti o t 4 % 

-> (1.11)

where the first and second terms on the left are minus the time 
derivative of the energy density and minus the divergence of the 
energy current, respectively. The last term on the right is the 
work done by the field on the sources. The bracketed term on 
the right is of a peculiar kind; it is often assumed to vanish in 
homogeneous media. However, applying (1.4), (1.7), and (1.8), 
we find—by integration over a space-time interval—that it re­
presents the work done by the field on the medium, and it gives 
the rate dW/dt at which energy dissipates from the field in an
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irreversible manner. We may express this result in terms of the 
potentials, and find directly from (1.8), introducing the con­
ductivities from (1.10),

for the absorption in the time interval zl I. To be more precise, 
eq. (1.12) includes the dissipation of energy, if any, through 
the boundaries of the medium.

As to the equations for the momentum of the field, we apply 
again (1.1) and get for the component in the direction of the 
.r-axis

1 Ö A A ~4ÏÏÏô7(ôxB)-+dlv'7'"

(1.13)
8 % \ OX OX O X O X

is M axwell’s stress tensor in matter. From equation (1.13) we 

find that the momentum density is (1 /4 ?rc) • (/) X B), which leads 
to the non-symmetric energy-momentum tensor of Minkowski.*  
We shall in the discussion of reflection and transmission of light 
waves by metallic surfaces, in II, attempt to show the direct 
significance of this property of the energy-momentum tensor. It 
must be remembered that, if one will ascribe values to quantities 
as energy and momentum, one shall not primarily look for cases 
where they remain unchanged, bid consider processes as ab­
sorption where exchanges of these quantities occur. As to the 
right-hand side of equation (1.13), the last term is the Lorentz

* Cf. C. Møller, The Theory of Relativity, Oxford 1952, p. 203. The Min­
kowski tensor has been adopted, too, in the 1951-edition of Die Relativitätstheorie 
by M.v. Laue.
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force density on the sources, while the first term corresponds 
to the first term on the right of (1.11), and is the rate at which 
the momentum density is taken up by the medium. The average 
rate at which momentum density is absorbed can be obtained 
from (1.12) when midtiplying by the factor k/co inside the 
brackets.

We are thus able to account for the momentum and energy 
exchanged between the sources, the field, and the medium. In 
the case where the sources are outside the medium and the 
field is determined by boundary conditions, the energy dissipation 
can be found from (1.11) or (1.12), and the momentum ab­
sorption from the corresponding expressions. It may here be 
noted that, if the sources are inside the medium and not appreciably 
affected by the above momentum and energy exchange, a detailed 
treatment of the phenomena as a rule will be much simpler than 
in boundary problems or cases where the reaction of the sources 
must be included in the description.

So far the absorption was considered to take place in a 
continuous manner. When attempting to subdivide the absorption 
by the medium into elementary processes we must take into 
account that the quantum of energy corresponding to a frequency 
co is tico. Il may be concluded immediately from (1.12) that the 
probability for the absorption of a quantum of frequency co and 
wave vector k is, during a time interval At,

p(k,co) = A t • Í— crir (À, co) I AZr (à, co) I + ~ -a (k, co) I 0 (á-, co) I j. (1.14) 
\nc n co I

This expression represents a statistical mechanical probability, 
and in contrast to the previous equations it depends directly on 
quantum theory, through the explicit appearance of the con­
stant h. From (1.14) can be derived in particular the fluctuations 
in energy and momentum absorption. We note further that, while 
the probability for absorption Ap(k, co) for quanta hco is positive 
for positive co, it becomes negative for negative co, corresponding 
to a transfer of negative energy to the field. It is a matter of 
convention whether one will introduce instead only the numerical 
value of co, and accordingly only positive energies. In § 4 will 
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be discussed a few interesting and simple consequences of 
equation (1.14).

In the description used here, represented by for instance (1.8) 
together with (1.1), the quantities e and l//i were considered as 
numbers in k, co-space and correspondingly as operators in 
ordinary space. This formulation will be sufficient for the present 
purposes. But it is seen that e and \/fi in (1.8) may be more 
general operators, and not necessarily linear. The other formulae 
in this paragraph can then be similarly interpreted.

The question of measuring the field quantities, like E, I), etc., 
is a rather subtle one. The dependence of the dielectric con­
stants on wavelength and frequency will evidently play an im­
portant role for such measurements. Actual examples of this 
dependence can be found in the following sections. liven though 
the description is best illustrated by such examples we shall make 
here a few remarks on the measuring problem in general. The 
familiar rule for measurements of the fields is that, for instance, 
E and D are the fields in crevasses in the medium, cut parallel 
and perpendicular to the field itself. But let us take into account 
that at the surface of the medium the fields do not change abruptly 
(as they would if the ratio between D and E were constant in 
the medium) and suppose that they vary in some smooth manner 
over a distance, d, from the surface. If now we cut crevasses of 
the above kind, though with dimensions smaller than or of the 
order of d, the fields arising in these crevasses are no longer E and 
1), because the. polarization has changed character. In fact, for 
sufficiently small crevasses, the measurements must all give E, 
because, for high values of k, the dielectric constant tends to 1 
so that the polarization disappears. This corresponds to the cir­
cumstance that the field acting on a classical point charge is E. 
Exceptions from the mentioned rule for measuring E and D will 
occur in many other cases; the rule is disobeyed if only short 
time intervals are allowed for the measurement, and there are 
cases too where the dielectric constants even for long wave­
lengths depend strongly on the wavelength of the field.
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§ 2. Semi-classical treatment of an electron gas.

We shall first contemplate the behaviour of an electron gas in 
classical mechanics. The properties of the gas will be described 
in terms of the dielectric constants of the electromagnetic field 
equations introduced in § 1. In the first part of the present 
paragraph, a more formal derivation of the field equations is 
given; in the second part, a comparison is made with the results 
of other authors. The question of the justification of the cal­
culation will be taken up in § 5.

The calculations are based on the previously mentioned 
picture of the dynamics of a system of electrons: There exists 

a total field in space and time, 0 (r, /), A(r,f), in which the 
separate electrons move. This motion gives rise to an induced 
charge and current density, ^ind an(l Jind, which quantities will 
be functions of the total field. Besides the induced densities there 
may be source densities, Q0Çr, /) and j0Çr, 0, distributed within 
the system. The latter densities can, for instance, correspond to 
a charged particle passing through the gas. From Maxwell’s 
equations for empty space, with charge density @ind + q0 and 
current density jind + j0, one then derives the field equations for 
the total field, of the type (1.3) and (1.4). In these equations the 
source densities are q0 and /0. We shall suppose that the elec­
tronic motion differs only slightly from that in the undisturbed 
state of the system. This implies, generally, that the field equa­
tions will become linear.

Quite apart from the question of the applicability of a linear 
treatment, and of classical theory, the particular approximation 
of the first order picture is that the motion of the individual 
particles in the gas gives rise to and derives from a field determined 
by Maxwell’s equations for empty space. But it will be clear 
that one should rather assume that the field connected with the 
motion of the individual electron is governed by the final field 
equations. Such a treatment on more precise lines is somewhat 
more complicated and we shall show that it is not always needed. 
As we shall see in § 5, the corresponding changes to be made 
in our present computation will imply a velocity-dependent self- 
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energy and a damping force on the electron from the field indu­
ced by it, not to be found in Maxweli/s eq nations for empty space.

Consider now a gas of free electrons and its behaviour in 
the presence of an electromagnetic field, the motion of the electrons 
being governed by classical laws and restricted only by the Pauli 
exclusion principle in the initial state; from Liouville’s theorem 
it follows, (hen, that the exclusion principle is obeyed at any 
later time. This approximation is conveniently termed semi- 
classical, and it is based on similar ideas as the Thomas-Fermi 
treatment of static electric fields. We shall find that the semi- 
classical treatment in some cases gives other results than the 
familiar classical treatment, where the electrons are assumed to 
be at rest.

The distribution function of the electrons over momentum 
space and ordinary space is f = f (p, r, t), where p is the kinetic 
momentum conjugate to r. The initial lime-independent distri­
bution function in the absence of external fields is called f0(p,r). 
'fhe behaviour in time of f is given by the Boltzmann equation

|{+ P ' gradp f+v ■ gradrf

where one assumes a trend towards the equilibrium state, determined 
by the right-hand side of the equation. This damping of the 
motion may be pictured as due to the resistance arising from 
collisions with the positive background in the gas. As a rule, 
we regard 1/r as infinitely small, in which case the damping term 
serves to give the retarded solutions of the equations of motion, 
i. e. of the field equations.

The difference between f and f0 is supposed to be small, 
and further is assumed to be independent of r. In the equation 
governing the behaviour of /’ we neglect second order terms and 
obtain the simple equation of motion for = fi(p>r, 0 

where E and B are the total microscopic field strengths, deri­
vable from the potentials. The term containing B in the Lorentz 
force may be omitted, being perpendicular to grad/)/’o.
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We wish to write equation (2.1) in terms of its Fourier com­
ponents in space and lime. Therefore we make the development 
/i (p,T, f) = (p , £, co) exp (zTr ■ r—itot), and similarly for 

k,a>
the fields. We solve with respect to the Fourier components of 
f1 and find

/“/p, tœ) =—1 ----------e/i-gradp/J,(p). (2.2)
— iu ■ k + ico — 1 /t

The equation may be applied to, e. g., a Maxwell distribution, 
but we shall be concerned mainly with the case of complete 
degeneracy, where gradp fo = — (iplp)'ô(p—p0), p0 being the 
momentum al the surface of the Fermi distribution. Since f0 
was assumed independent of r, the same holds for p0. We note 
that, for temperatures different from zero, the ¿-function in 
gr adp f0 is replaced by a function of finite width, but as long 
as the temperature remains low compared to the degeneracy 
temperature there will be no appreciable change in the cal­
culations below.

The current induced in the system can be expressed now as 
a function of the field. Multiplying in (2.2) by eu, and inte­
grating over velocity space, we have for the transverse part of 
the induced electric current density

¿(p~J>o) 
P

The integration over p amounts to an integration over angles.
When this is performed we compare with (1.9) and obtain the 
expression for the transverse dielectric constant of a degenerate
free gas

etr(k,co) = 1 +
o 23 co0
4 ft> Po

(2.3)

where w0 is the classical resonance frequency of the electron gas,
2*
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or cog = Á ne2 o/in, o being the density of electrons; v0 is the 
velocity at the top of the Fermi distribution.

In quite a similar manner the induced charge density may 
be calculated from (2.2) as a function of the electric potential. 
The longitudinal dielectric constant in (1.9) is then found to be

In these equations, and in the following, the logarithms denote 
principal values, so that their imaginary parts are between
- in and + in. It is seen that a change of sign of co in (2.3) 
and (2.4) will have the same result as a change of sign in the 
damping term z’/r. Further, the dielectric constants depend on k 
only through the square of this vector.

We have distinguished between the momentum p() and nw9. 
This discrimination is not necessary in the simple calculations in 
this paragraph, and in the following it is not stressed. However, 
a discrimination is useful for a relativistic gas, where (2.4) and 
(2.5) can be applied directly. Moreover, it is important when the 
self-energy influences the connection between p and v, as discussed 
in § 5.

As mentioned, a main difference between the treatment by 
Boiim and co-workers, and the present discussion, arises from 
a difference in attitude in the description of the field, to which 
we ascribe a precise classical meaning. While we obtain a com­
mon description of all waves of the field, Bohm treats essentially 
only long waves, for which a simple development in powers of 
v2k2/œ2 can be made. Boiim asserts that the field equations re­
present merely collective motions, and not individual particle 
behaviour.

A simplification of the field equations corresponding to (2.3) 
and (2.4) is desirable and possible in most problems. We see 
that the dielectric constants depend on the dimensionless ratio 
between Ico + z'/r] and vok. If we are concerned with a field of 
given frequency the significant wave vectors k will collect around 
a certain corresponding vector, and the above dimensionless 
ratio may be said to have an approximate value, determined 
implicitly by the field equations. We can here distinguish between 
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two essentially different cases, namely | m + i/r\ larger or smaller 
than vok. If it is assumed that the collision time r is long, these 
two cases imply that during one period of the field the path 
travelled by an electron is, respectively, shorter and longer than 
the wavelength of the field. In the former case, the electron gets 
the impression of a time-dependent field while, in the latter case, 
it reacts nearly as it would in a static field.

Consider first the simpler case of k tending to zero. The 
transverse dielectric constant (2.3) then approaches the classical 
one for a homogeneous medium (omitting the factor mv0/p0),

CO (o) + z/t)
for zi0 À' < I co + z'/r (2.5)

the first correction term being (—co2å2zi2)/(5 co (co + z'/7)3)- In 
this limit, the expression for the longitudinal dielectric constant,
(2.4),  becomes of similar type,

, for p0À’< co+z/r , (2.6)

where we have included the first correction term in k2. If one 
is not concerned with a degenerate gas, one can find this term 
simply by replacing 3i^/5 by the average of the velocity squared 
in the gas in question. It should be mentioned that the dispersion 
formula (2.6) has been discussed previously by several authors 
(cf., e. g., Bohm and Pines, 1952).

In the opposite limit of uok large compared with co + z‘/t one 
finds a striking departure from the classical result. As mentioned, 
the electrons behave nearly as if the field were stationary, but 
in the dielectric constants finite imaginary terms appear, cor­
responding to energy absorption by the medium. Using (2.3) and
(2.4),  we obtain in this case (omitting again the factor mvolpo)

for v0 k > I oj + i/r ,

Z?o Â* > co 4- z’/t.1 (2.8)
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In approximate calculations one can use the formulae (2.5), 
(2.7) and (2.6), (2.8), instead of the more involved ones, (2.3) and
(2.4).  11 is of interest, further, that in a qualitative sense one 
may apply, e. g., formula (2.5) for all values of k and co, if only 
in this equation z’/r is replaced by z'/r + z 4 Â’n0/3 tï .

We may mention briefly some results concerning the non-degene­
rate gas. For a Boltzmann distribution, an approximate description 
can be obtained from the above formulae when replacing z>0 by 
the temperature velocity of the particles. More accurate expres­
sions are found by introducing the distribution function /‘() = 
C • exp (—nw2/2 0) in (2.2). It is apparent that, for co large compared 
to k (2 0/ni)1, the equations (2.5) and (2.6) are not far wrong; 
in the series development one need only introduce the proper 
averages of the particle velocities. In the opposite limit we get, 
e. g., for the longitudinal dielectric constant, corresponding to 
(2-8),

for (2 Ok2/in)2 > I co -j- z’/r (2.9)

where the first term in the brackets gives the Debye-IIiickel 
formula for static electric fields, while the second term accounts 
for the energy absorption.

It is noteworthy that for a Boltzmann gas the imaginary part 
of the dielectric constants is finite, independently of the values
of k and co. Thus, for transverse fields, one finds directly from 
(2-2)

Im (etr)
oo co k

•exp(—mto2/2(9F), (2.10)

the formula holding for sufficiently large values of r.

Spin contribution to magnetic properties.
So far, we have considered charged particles without intrinsic 

magnetic moments. But already in the semi-classical treatment it is 
possible to include the electron spin in a simple manner. Consider for 

-> / ->■ \

this purpose a single Fourier component B [k, co) of the magnetic field. 
An electron with magnetic moment ß has the interaction energy

—>■ ~
± ßB (k,co) exp (ik-r — icol),
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corresponding to its moment being either parallel or antiparallel to the 
field. If the distribution function is /+ and /— for parallel and anti­
parallel spin, respectively, we get to the first order the following Boltz­
mann equations

(— z co + a ■ ik 4-1 /t) (Å-, co) ± ß 13 (k, co) ik ■ gradp /0 m = 0, (2.11) 

where, for instance, (k, co) = f+(k, co) — f(k, co), / being the spin 
independent distribution function in (2.1). The contributions to the 
induced magnetic moment of the gas from the parallel and antiparallel 
distributions are equal. We find readily, for the Fourier components 
of the spin magnetic moment per unit volume,

M(k,co) = mß2B (k, co) .
P v ■ k  Í¡T — CO

A magnetic moment M is equivalent to a current (c/4 n) rot M, and 
thus we find, by summation, the spin contribution to the transverse 
dielectric constant of a degenerate gas

(2.12)

If, more naturally, we describe the effect as a contribution to the perme­
ability /z we can use the relation d(l//z) = — (co/kc)2 ôetr. In the limit 
of low frequencies we obtain

(2.13)

For a free electron gas, the first term in the brackets leads to the 
familiar spin paramagnetism, equal to three times the diamagnetic con­
tribution. Since, generally, the spin contribution to the electromagnetic 
properties of the system is small compared to the orbital contributions 
(2.3), it will be neglected in the following.

When comparing our description in this paragraph with 
treatments by other authors it should be mentioned, first of all, 
that a hydrodynamical discussion of the motion of a Thomas- 
Fermi gas has been attempted by Bloch (1933, 1934). The 
pressure—proportional to 3—arising from the zero-point kinetic 
energies was introduced in hydrodynamical equations of motion. 
Using only the two parameters pressure and velocity of the liquid 
model for the description of the state of the electron gas, Bloch
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obtained an approximate and smoothed-out picture of the 
motion. It is easily shown that, in the linear approximation, the 
model of Bloch gives, for the dielectric constant of the long­
itudinal motion,

e1 = 1
2

_________________

(co+z7t)2-à?2zî2’
(2.14)

where the constant u2 is given by u2 = (5/9)-u2 and thus com­
parable to the velocity, p0, at the top of the Fermi distribution. 
The velocity u may be said to represent the sound velocity in 
the gas without interaction (co0 = 0). When kv0 is small compared 
to to we make a scries development of (2.14) and compare with 
(2.6). In this limit, the latter formula leads to u2 = (3/5)-u2, 
which is close to the above value found by Bloch (cf. Bohm 
and Gross, 1949). For values of larger than co, equation 
(2.14) gives a screening of the field quite similar to that in (2.8), 
although the value of u2 should now be changed to (1/3)-y2; 
moreover, the important finite imaginary part of the dielectric 
constant (2.8) is not reproduced in (2.14). We shall return, 
presently, to some of the simple features described by (2.14).

As regards the application of the hydrodynamical model of 
Bloch to the transverse field, we note that the transverse motions 
do not affect the density. The model must therefore give the 
same result as the simplest classical picture. Accordingly, one 
finds the transverse dielectric constant (2.5), which formula is 
obtained from (2.3) when putting the electronic velocity v0 equal 
to zero. The hydrodynamical model is not appropriate, apparently, 
when (2.7) applies, i. e. for kv0 > | co + z‘/T | • It fails to describe 
the orbital diamagnetism and the anomalous skin effect (cf., 
e. g., Lindhard, 1953).

As mentioned in the introduction, an interesting attempt to 
give a more exact solution of the equations of motion for a 
degenerate gas has been made recently by Tomonaga (1950). 
His treatment, however, was limited to the one-dimensional 
case. On the assumption that the field contained only waves of 
long wavelength, which in the present formulation means that 
semi-classical methods apply, Tomonaga obtained a solution 
without recourse to usual perturbation theory. The result was a 
linear field equation for the longitudinal field given by the 
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dielectric constant (2.14) of Bloch’s three-dimensional model, 
only now with u = i>0, v0 being the velocity at the top of the 
one-dimensional Fermi distribution. Now, it so happens that, if 
we apply the present method to the one-dimensional case where 
the velocity v and the wave vector can be only parallel and anti­
parallel, we find immediately from (2.2) the dielectric constant 
of Tomonaga, (2.14) with u = d0. It may appear surprising that 
a first order treatment gives the same result as a more precise 
transformation. The reason for the agreement is that in the one­
dimensional case the first order calculation is in fact self- 
consistent if only long waves are considered, as will be shown 
in § 5. We note, further, that the Tomonaga treatment is not an 
exact one, because of the omission of the short waves of the 
field. In § 3 we shall deduce an expression, (3.12), for the one­
dimensional dielectric constant, based on quantum mechanical 
equations of motion for the electrons.

Let us regard, for a moment, the simple picture suggested 
by the Bloch model (2.14). For long waves the energy of the 
field quanta is

E = (p2 ir + h2 coj)2 pu2 + p2/2 p,

where p — hk is the momentum, and p may be described as 
the mass of the quanta. The value of p is

fia>o /' e2 (p0\2
!F = 2",|3^.) (üf

which is usually of the order of the electron mass. If, for instance, 
a charged particle passes through the gas, such field quanta, 
equivalent to particles, will be created. In the first approximation, 
these particles will subsist in the system, but a closer inspection 
shows that they have a finite life-time (ef. § 5). For increasing 
values of p we find, according to the more precise field equation
(2.4),  that the solution of the field equations is considerably more 
complicated, and large damping terms appear. In this region 
field quanta similar to particles can not be identified. However, 
for nearly stationary cases the field equations, (2.8), are of the 
Yukawa type with screening length 1/x = i;0/3 co0 (equation 
(2.14) gives 1/x = u/a>0). In Bloci-i’s model the screening length 
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is e(¡ual to the Compton wavelength, li/fiu, of the field quanta, 
and in the more accurate description this is approximately true. 
The properties of the field quanta, therefore, are not unlike those 
of mesons. Yet, it should be emphasized that the field quanta 
in (2.14) account only for part of the properties of the gas, 
excepting the one-dimensional case. If we consider the thermal 
properties of the system (2.14), we find that the excitation is 
vanishing, unless the temperature, 0, is of the order or larger 
than /iw0. This differs from the expected result for a free gas, 
i. e. thermal energy proportional to 02. When one uses instead 
(2.8), together with the particle equations, a (^-dependence is 
found, as will be discussed in II.

In a treatment of stopping problems Kronig and Korringa (1943), 
and Ixronig (1949), have attempted to describe the motion of a metallic 
electron gas as that of a charged liquid, subject to friction from the 
background of positive ions and having a certain internal viscosity. 
The pressure effects, important in the model of Bloch, are neglected. 
For comparison, we shall quote the longitudinal dielectric constant 
corresponding to the model of Kronig and Korringa.

Let (>m an(i Qc be the densities of mass and charge of the liquid. 
The viscosity is and the friction with the static background is £. 
From the classical hydrodynamical equations of motion one finds then, 
in the linear approximation,

o m co2 i (O (J; 2 T] A-2) '

This differs from the classical e in (2.5) only by the term involving the 
viscosity rj. If this arbitrary parameter is large, as assumed by Kronig 
and Korringa, one gets a strong dependence of el on the wave number 
of the field. However, for large values of k, where the viscosity term is 
dominating, quantum theory takes over; in §3 will be given a simple 
and more appropriate formula for e1 at short wave lengths (see, for 
instance, eq. (3.4) and page 32). The model contained in (2.15) is less 
appropriate than that of Bloch, and the picture involving a viscosity 
of the kind met with in ordinary hydrodynamics can be somewhat 
misleading (cf. p. 39). We note that the transverse dielectric constant 
in the model of Kronig and Korringa will be quite similar to (2.15).

Already here mention may be made of the field equations proposed 
by London for superconductors. It can be of interest to compare his 
equations with those in the present treatment of a free gas. We arc 
then concerned with the equations (1)—(VIII), p. 29. F. London (1950). 
They are seen to result from the following simple dielectric constants
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where A is a constant which, according to London, defines a density 
of superconducting electrons, = (zn/e2Zt). Further, an = Qne2Tn!m is 
the conductivity of the remaining normal electrons. It is not easy to 
understand why etr and e1 should be put equal, corresponding to g = 1. 
For this reason, and because (2.16) is not specified in detail for long and 
short waves of the field, it is difficult to make a direct comparison with 
the dielectric constants derived above.

It can be illustrative to compare (2.16) with the conventional picture 
of an ideal conductor. The field equations for the latter are usually 
assumed to be those resulting from (2.5) with 1/r = 0. Therefore, for 
fields varying not too quickly in time, London’s equations are merely 
the retarded equations for the usual model of an ideal conductor. It 
appears from (2.7) and (2.8) that the mentioned model of an ideal con­
ductor is inadequate as a picture of an electron gas, which makes more 
obscure the meaning of equations as (2.16) (cf. II and Lindhard, 1953).

§3. Quantum mechanical treatment of electrons.
We shall now include the quantum mechanical description 

of the electronic motion in the calculation which, otherwise, 
follows quite similar lines as the semi-classical treatment in 
§ 2. The main difference is that previously we distinguished only 
between wavelengths 1 ¡k of the field, long or short compared 
to v0/a>, while now we must further compare 1/k with the wave­
lengths 1/ÅO = ñ/nw0 of the electrons in the gas. As long as one 
is concerned with long waves of the field there will be only minor 
corrections to the semi-classical formulae, bid for field waves 
shorter than 1/Ao the field equations are completely changed.

In the calculations we make the same assumption as in § 2 
regarding a common field in which the electrons move. This 
means essentially that time-dependent Hartree equations are 
used. As to the initial state we take, as before, simply the freely 
moving electrons of the Sommerfeld model and compute to 
first order in e2. None the less, our results go beyond first order 
when we introduce an effective electron mass (cf. § 5).

Already here mention may be made of one particular cir­
cumstance concerning the behaviour in time of a system when 
disturbed by external fields. Il is apparent that the wave functions 
will not develop independently in time, because each particle 
moves in a field determined by the others. But, since the originally 
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orthogonal one-particle wave functions are governed all by the 
same one-particle Hamiltonian, they will automatically remain 
orthogonal. This has the particular advantage that the exclusion 
principle need not be taken into account explicitly in the dyna­
mical treatment, just as in the semi-classical case. It follows, 
moreover, that for a wide class of phenomena, e. g. in impacts 
by external charges, the seeming reduction in transition possibilities 
due to the exclusion principle*  does not come into play.

As regards the boundary conditions in the perturbation 
treatment, one should at the time i = — oo find the unperturbed 
state. This condition is fulfilled if an infinitesimal negative 
imaginary term, — ir/2, is introduced in the energies of the 
electron states, because one then can obtain the retarded solutions 
of the equations of motion. It can be convenient to assume that 
the width F of the excited states is finite, since the width is con­
nected with the resistance in simple pictures of metals. However, 
this manner of describing resistance is sometimes too crude,—it 
is less justified than in the classical equations (2.1). The way in 
which the metallic resistance appears in the field equalions belongs 
to the properties of the positive background of charge, with which 
we are not immediately concerned. In such more complicated 
cases the use of causal dielectric constants is to be preferred 
(cf. § 5).

We consider an assembly of electrons having one-particle 
wave functions ( r, i) = (r) • exp (—z can i + Fn f/2 fi), the
system being initially e. g. in the ground state. The perturbing term 
in the Hamiltonian is

Q — eø(r,f) + — (p • A (T, t) + A (T, f) • p), (3.1)

where for the present we disregard spin contributions.

Equations for longitudinal field.
The perturbation gives rise to an induced charge and current 

density for each of the electrons. The total induced charge density, 
t?i ( r> 0’ in the system is the sum of the induced densities for 
the individual electrons. We write, as before, the fields and the

* Explicit reductions of such kind have been applied in nucleon problems 
by, e. g., Goldberger (1948), and Blatt and Weisskopf (1952).
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charge densities in Fourier components in space and time. 
Choosing the gauge to be such that the longitudinal vector potential 
vanishes, we find from (1.9) the connection between the long­
itudinal dielectric constant, £ (Á’, co), and the induced charge 
density. We specialize to the case of free electrons with wave 
functions ~ 1/2 exp (z‘Á’n •?) for the initial stales, and
similarly for the final states. When we choose a Fourier compo- 
nent k, co of the induced charge density, an electron with mo­
mentum hkn can only jump to a state with momentum (Á’n± k) . 
The contribution from this electron to the Fourier component 
of the induced charge density is, assuming a constant imaginary 
energy difference, iy,

^ind. (K t) = 2 me2
/i2 V

<k (k, co) • exp ( ik • r— icot) compl. conj.

The distribution function of the electrons we denote as f = f(En), 
En being the unperturbed energies. Summing (3.2) over the 
electrons and using the definition of the retarded dielectric con­
stant, we find for free electrons

where AT = f (En) is the total number of electrons, and co0 as 
n

before is the classical resonance frequency of the gas, (Oq = 
4 Jt e2N/mV.

In (3.3), we sum freely over all electron states, since contri­
butions from jumps between two occupied states cancel, as follows 
from our previous remarks. In the derivation of (3.3), the tech­
nique of quantum field theory is not advantageous, but can be 
so in higher order computations.
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We apply first the formula (3.3) to the extremely simple ease 
of the electrons being initially at rest. Accordingly, the momenta 
!ïkn are neglected in (3.3), which leads to

(3.4)

This formula corresponds to the classical result (2.6) and shows 
in a direct manner how the inclusion of quantum effects implies 
a strong dependence on the wavelength of the field.

Take next the case of the Fermi distribution, and assume 
f(En) = 1 for En/-E0, while for higher energies /’(En) = 0. 
Put further A'o = zz?z?o/2 = Erk2/2 m. In the summation in (3.3) 
we first average over the electrons with the samt*  energy h2k^/2m, 
that is to say, we integrate over the angle between kn and the 
fixed vector k. One then obtains characteristic logarithmic ex­
pressions, not unlike those in the semi-classical formulae for e. 
Finally, we integrate over the energy En, from 0 to Eo. When 
quoting the resulting formula it is convenient to use a few ab­
breviations; we write z = k/2 k0, co' = co -|- z(y//z), u = | co |/A’z>0, 
and u' — co'lkv0. The parameter z, which contains the wave­
length of the field and that of an electron in the gas, serves to 
indicate how far one is away from the classical limit, the latter 
corresponding to z = 0. Further, the quantity u (or zz') shows 
whether an electron during one period of the field travels a 
distance longer or shorter than one wavelength of the field, 
these two cases being represented by respectively zz < 1 and u > 1. 
The formula for the dielectric constant of the degenerate Fermi 
gas is then

o 2, 3 co«
£ = 1 + ;2“2 ’ /’ (3.5)À zq

where principal values are taken. In the present connection, we
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are concerned with very small valnes of the damping y. In the 
limit of small y we find I he following expressions for the real 
and imaginary parts of /’= /’j + if2,

= -^ +¿(i-(--„y; z —11+ 1
Z^~ll~l

+ ^{ i — ('+ «)2) log Z + ZZ + 1 
i+zz-1

/■2(zz,r) =

%— zz, for z + zz < 1 ,

~ { 1— (z — n)2}, for |z — zz I < 1 <z + u, o Z

0, for |z — zz I > 1.

The contents of these formulae for the longitudinal dielectric 
constant are perhaps hest appreciated by finding the approximate 
values in a few limiting cases. It is seen that, for z = 0, the equa­
tions (3.5), (3.6) lead to the semi-classical formula (2.4). A 
similar result is obtained for small values of z. Consider here the 
case of z + zz < 1. This corresponds in the semi-classical treat­
ment to formula (2.8), where zz < 1 and thus the electrons can 
move through several wavelengths of the field during one period. 
We assume that the damping is small and develop (3.7) in 
powers of the small quantities zz ± z. This leads to 

z T zz < 1 (3.9)

a formula equivalent to (2.8), except for the last term in the 
brackets, giving rise to the subtraction of a constant in ez(cf. 
also Lindiiard, 1946).

Another case with correspondence to the treatment in § 2 is 
that of zz > 1 + z. This inequality implies that /zco is large com­
pared with the energy transfer /z2 (Å’2 + 2kko)/2 in to an electron. 
Therefore the classical formula on the form (2.6), where zz > 1, 
must apply, as is also seen from a series development of (3.6)
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(3.10)

In the more typical quantum mechanical case where z>u: 1, 
the longitudinal dielectric constant tends to 1 for increasing z, 
because the electrons respond only weakly to the short waves 
of the field. We shall quote only the result for the region where 
the imaginary part of el is finite. Thus, we find 

in the case of | u — z < 1, u + z > 1. The resulting resonance 
effect is of the same kind as that in (3.4), for large values of k.

Before finishing this discussion of the longitudinal field we 
shall deduce the dielectric constant for the case of a Fermi gas 
in one dimension. In § 2, it was shown that the semi-classical 
treatment gives just the field equations of Tomonaga (1950). The 
present quantum mechanical perturbation method must of course 
give a somewhat different result for short waves of the field.

The desired equations can be derived immediately from 
equation (3.3), if there we put equal to zero all vector components 
in the direction of the y- and z-axes. As before, it is supposed 
that f(En) = 1 f°r En < Eo, and otherwise /’ = 0. Here, 7i0 = 
mu*/2  = /j27<o/2 in. Summing over kn = kxn one finds that 

which formula for large k0 tends to the semi-classical one, (2.14), 
with u = v0. As usual, principal values are to be taken in the 
logarithmic expression in (3.12). In the other extreme of k0 
small compared to the wave vector k of the field, the formula 
(3.12) leads to the general result (3.4). It is seen that, while in 
the semi-classical treatment the ease of one dimension was much 
simpler than the three-dimensional case, this is not so in the 
quantum mechanical treatment.
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Equations for transverse field.
For the case of transverse fields we shall apply the same 

perturbation method as for longitudinal fields, and again it is 
assumed that the motion of the electrons is non-relativistic. The 
perturbation term in the Hamiltonian is (3.1), where the spin 
contribution is neglected. The inclusion of spin would only give 
rise to small changes in the field equations, as is evident from 
the result (2.13). In analogy to (3.2) we now find the contri­
bution to the induced transverse current from an electron with wave 

-> -> .
vector kn , in the simple harmonic field A (7c, co) • exp ( ik • r — iw t) 
+ compl. conj., corresponding to a single Fourier component,

2

(3.13)2mcV
n li

■ exp ' ik ■ r — icoi) + compl. conj.

We introduce the distribution function of the electrons and, ap­
plying (1.3), we can express the transverse dielectric constant on 
a closed form. The dielectric constant is a three-dimensional 
tensor which, because of the symmetry in problem, is on diagonal 
form, with diagonal elements

1

(3.14)

1 1
2

We pass immediately to the summation for the case of a 
degenerate Fermi gas, which will give the quantum mechanical 
equation corresponding to (2.3). With fixed values of co and the
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vector k we first average over the angle between kn and k, and 
next integrate over the numerical valne of kn, from 0 to k0. 
Using a familiar notation we can then write

2
ctr(k,(o) = 1—~lftr(u,z), (3.15)

where ftr = f[r + is determined from the equations 

f[r (u, z) = I (z2 + 3 u2 + 1) — ~ / (1 — (z — zz)2)2 log

+ (l-(z+zz)2)2log

z-zz+1
z — u — 1

(3.1

Till (1 — ir — z2),

0,

for zz + z < 1,

for I zz — z I < 1 < zz + z,

for I zz — z I > 1 .

(3.17)

The equations (3.16), (3.17) are valid in the limit of y —> 0. The 
formula for f, when y is finite, can easily be obtained from (3.16) 
by comparing this equation with (3.7) and (3.6).

Let us find the values of the 
limiting cases introduced earlier.

above functions in the simple 
Suppose first that zz + z < 1.

It is seen that here
Etr w) =

(3.1
z 4 k v0

2 7 2œ k

This result is not unlike that in the semi-classical case, (2.7); 
only we find a characteristic new term—the first one in the 
brackets in (3.18). When multiplying by co2/k2c2, this term is seen 
to contribute — (Åo/3 %) • (e2/znc2) to the permeability. It repre­
sents the weak Landau diamagnetism of the gas and is here 
equal to one third of the paramagnetic spin contribution (2.13). 
We note that the Landau term appears only in the field equations 
when zz + z <X 1, i.e. for small values of the frequency co.
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For the case u > 1 + z we have again correspondence to the 
classical results, and the value of etr is found from the series 
development

Suppose that terms higher than the first in the brackets can be neg­
lected. It is apparent, then, that for finite y’s there remains a small 
difference from the previous semi-classical equation (2.5), be­
cause the damping is not reproduced in (3.19). This difference

—>■
has its origin in the term (e2/zzzc) A (7, /) • | y> |2 in the expression 
for the quantum mechanical current of a particle, and is due to 
the crude assumptions made regarding the damping in this 
paragraph. The difference disappears in a more systematic treat­
ment, as outlined in § 5.

In the quantum mechanical limit the region of interest is
(zz— z)2<l << (zz + z)2, where the imaginary part of e is finite,

£/r(Á-, co) = 1 — —® <[ 1 — z (1 — (zz —z)2)2|, I zz —z I < 1 « zz +z. (3.20) 
co" I 32 z J

The present calculations of the dielectric constants were non- 
relativistic. As to a relativistic description we may quote one 
simple example. It is assumed that the electrons are originally 
at rest, and the induced charges and currents are computed from 
the Dirac equation for the electron. From a so-called simple 
calculation, one then finds that the longitudinal and transverse 
dielectric constants are equal and given by

2

ez(Á', co) = £ir(Å', co) = I + -Z2T4--- 7— --------- (3-21)Zz k / n k \ Zz co
4 9 1 ' ñ 2 2 æ ' 7 2 44 zzz“ \ 2 m c ) 4 m c

/ ■ y ■where co = co + z£. It is evident that, for small k and co, theZz
formula leads to (3.4). This result, moreover, proves in a direct 
manner the equality of £<r and el in the case represented by 
(3.4), where we calculated only the longitudinal dielectric con- 

3*  
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stant. An application of (3.21) can be found, e.g., in the question 
of energy loss by a relativistic particle.

§ 4. Damping of motion of charged particles,
and self-energy.

The slowing-down of a charged particle moving through the 
system is a simple and interesting problem, in which the above 
description can be of great convenience. The motion of a charged 
particle is of particular interest in the present connection because 
it relates to the self-consistency of the method of approach em­
ployed in this paper, as will be discussed more closely in the 
next paragraph. We shall derive general formulae for, e.g., the 
specific energy loss. However, the dielectric constants calculated 
to first order in e2, starting from the free particle approximation, 
will not always lead to very accurate results, and accordingly 
we do not perform elaborate computations of the stopping.

A treatment of stopping problems based on the dielectric 
properties of a medium was suggested early by Fermi (1924). 
As we shall see, a detailed discussion of the problem in this 
manner will not be confined to the simple dispersion properties 
of the medium. Still, if one considers only distant collisions, these 
properties are sufficient, which circumstance was utilized by 
Fermi (1940) in a treatment of polarization effects in the stop­
ping of relativistic particles. We shall show that our classical 
field equations are applicable even for the short waves of the 
field.

It is not the purpose here to discuss the numerous aspects of 
the problem of energy loss in matter by fast charged particles; 
a general survey based on simple concepts has been given by 
N. Bohr (1948). For the present we are concerned with the case 
where a perturbation treatment can be used. Let it be assumed, 
further, that the particle is so heavy that its energy loss is com­
paratively small, and it behaves approximately as a classical 
point charge, ze, moving with a constant velocity, v, — we may 
for instance consider a proton. This simplification allows a 
description by forced classical vibrations, since the source density 
is given beforehand as a function of space and time.

Before specializing to a free electron gas we give a general 
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derivation of the energy loss suffered by the particle. In the case 
considered the charge density is

(4.1)

The energy loss per unit path is zLe times the electric field 
strength E at the immediate position r — v t of the particle, which 
field is antiparallel to u. Limiting at first the treatment to the 
longitudinal field, as is always sufficient if the particle velocity 
is non-relativistic, we obtain for the time-independent field to 
which the particle is subjected

(4.2)

which quantity therefore depends on the imaginary, or odd, part 
Of 0 (i , co). The resulting specific energy loss is obtained from 
(4.1), (4.2), and (1.4); we transform the three-dimensional inte­
gration over k to 
co — kv cos (l, u),

dE  
dR ~

one over its numerical value and one
and find

over

(4.3)

where Im (x‘ + iy) = y. Il is noteworthy that, since the dielectric 
constant enters in the denominator, the energy loss depends both 
on the longitudinal conductivity (1.10) and on the polarizability.

For the sake of completeness, we derive the contribution from 
the transverse field too. The transverse electric field is given by 
Etr (k, k = i (k -v/c)Atr(k, k . By means of (1.3) the field is 
obtained from the transverse part of the current corresponding 
to equation (4.1). It is then an easy matter to deduce the stopping

Since the contribution from the longitudinal field is given always 
by (4.3), the total average energy loss is the sum of (4.3) and

* The energy loss may also be calculated from the energy dissipation term in 
the conservation equation for the energy of the field (the bracketed term on the 
right-hand side of (1.11)). This leads again to (4.3).
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(4.4). In some cases (4.4) can be simplified considerably. Thus, 
il‘ £tr has no finite imaginary part and can be considered as 
independent of k, the formula reduces to the one deduced bv 
Frank and Tamm (1937) for the Cerenkov radiation (see further 
A. Bonn, 1948). As mentioned above, we shall be concerned 
only with the case where the contribution (4.4) can be neglected.

It is perhaps not out of place to interpose here some further 
general remarks, as an introductory to the calculations below. 
In the problem of the stopping power of matter it can be illus­
trative to consider two extreme states of motion of the electrons 
in the substance. First, one can regard separated electrons, each 
bound in, say, a harmonic oscillator of frequency co. This pro­
blem was solved at an early date (N. Bohr, 1913), and it is a 
characteristic feature that the energy transfers to the electrons 
become very small at distances exceeding the adiabatic limit v/co, 
determined by the velocity of the particle and the frequency of 
the oscillator. Second, one may consider the opposite case where 
the electrons move freely in the system. Then, a different kind 
of reduction must appear in the energy transfer at large distances 
(if there were no reduction the total energy transfer would be 
infinite). The proper explanation is to be found in the screening 
of the field by polarization in the gas, as was shown by Kramers 
(1947), but not in the resistance damping, the latter having been 
suggested by v. Weizsäcker (1933). Simply for dimensional 
reasons it is clear that the frequency which for free electrons 
replaces that of the harmonic oscillator must be the classical

1 
resonance frequency of the gas, a>0 — (4 %c2^/m)J, where o is 
the density of electrons. By combining the above two pictures— 
the harmonic oscillator and the free gas—in a suitable way, one 
should be able to account for the stopping effects in atomic 
systems. We note here that the free electron model—i.e. the 
Thomas-Fermi treatment—is useful even in the description of 
atoms. As a mailer of fact, the present calculations on a free 
electron gas were utilized in a simple general discussion of atomic 
stopping power in a recent paper (Lindhard and Scharfe, 1953).

Let us apply the formula (4.3) to the simplest case: a homo­
geneous gas of electrons at rest. We therefore introduce (3.4) in 
(4.3) and tind by integration
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where

(IE
dH (4.5)

(4.6)

In the model used the energy loss therefore vanishes for mv2 E- hco0. 
However, the model is preferably to be applied in the familiar 
extreme of large v. From a series development of (4.6) one here 
gets

(4.7)

which is just the result of Kramers*.  One may indeed, as indicated 
above, derive this formula using a simple qualitative argument 
(cf. A. Bonn, 1948; Lindhard and Scharff, 1953), but then 
an undetermined constant remains inside the logarithm.

If one calculates separately the contribution to the energy loss 
from distant collisions, one can from (2.6) or the Bloch model 
(2.14) refind the result (4.7), again apart from a constant in 
the logarithm. Mention should be made here of the model of 
Kronig and Korringa (1943), Kronig (1949), introduced in a 
treatment of stopping by a free gas. A special feature of their 
liquid picture of the system is the appearance of a viscosity, tj , 
leading to the dielectric constant (2.15). Kronig and Korringa 
applied this semi-classical model not only for distant collisions, 
where it does not diller from (2.6) or (2.14), but even for close 
collisions where the viscosity governs the motion. One gets a 
formula similar to (4.7), though with 8 z?/3 q instead of îi in the 
logarithm. It is hardly desirable in this way to replace quantum 
theory by classical viscosity. Still, Kronig and Korringa found 
the screening by polarization at large distances prior to Kramers.

We now turn to the treatment of a degenerate Fermi gas, 
where (3.5), (3.7), and (3.8) apply. Of course, these more involved 
formulae should be regarded merely as approximate estimates 
of the behaviour of the gas. The reason for their application 
here is that we wish to see whether deviations from (4.7) or

* It is to be noted that we have proved here the formula (4.7) only for such 
dilute gases where the Maxwell distribution applies (cf. § 5).
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(4.7) will occur. For instance, one might find a change by a 
factor inside the logarithm in (4.7), which would be difficult to 
discover in the treatments of, e. g., Kramers (1947) and Pines 
(1953).

Introduce first the equation (3.5) in (4.3), so that the energy 
loss is expressed by the functions fx and integrated over the 
variables u and z. The logarithmic term, L, in (4.5) takes the 
form

L = (4.8)

where /2 = e2/(n7ip0). The quantity %2 varies only slowly with 
the density of electrons, and is for metallic electrons somewhat less 
than unity. The density of the gas enters only through /2 and 
through the upper limit, p/p0, in the integration over u. The func­
tions fx and f2 are given by (3.7) and (3.8), respectively. The 
value of L in (4.8) depends most directly on f2, i. e. the imaginary 
part of £, while fx is important only for small values of z, 
which implies that the polarization is of significance for distant 
collisions.

For the case of velocities v high compared with v0 one may 
proceed as follows in evaluating L. Divide the integration in two 
parts, n < u1 and u > u1, where u1 is a constant somewhat larger 
than unity. The integration over u < u1 will give some constant. 
For u > u1 there are two contributions, one from the region 
where f2 is finite, or | u—z I < 1, corresponding to close collisions. 
The other contribution arises from the resonance at longer di­
stances, where z2 + /2/'1(u, z) = 0. Using the formulae (3.7),
(3.8),  and (3.10), we find that the two last mentioned contri­
butions are equal to log (p/poux), and adding the result for u < u1 
we have 

where the quantity C is expected to depend on the value of /. 
Of course, for small densities, and accordingly thermal velocities 
of the electrons in the gas, the value of C will tend to unity and 
equation (4.7) results. In the opposite extreme of high densities, 
i.e. /2«1, a simple numerical computation indicates that C 
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again approaches unity. Intermediate densities, /2 ~ 1, give 
values of C not much less than 1. In most cases one will then 
not be far in error in assuming C = 1.

For low velocities of the particle, by which we understand 
values of v small compared to the maximum velocity v0 of 
the electrons in the gas, there is a considerable difference between
(4.8) and the simpler picture resulting in (4.6). We can here in 
the limit replace u by 0 in f\, and f2, in the denominator in (4.8), 
and using (4.5) it is seen that 

dE 
dR

(4.10)

showing that for small v the energy loss is proportional to the 
velocity. The case of low velocities was treated on semi-classical 
lines in a paper by Fermi and Teller (1947). The formula 
obtained by them results from (4.10) if in C1 the function /t(0, z) 
is put equal to /^(O, 0) = 1, and at the same time /2 « 1, which 
gives Cx = — log % —I log (v0R/e2).

One may replace (4.10) by a simpler and yet approximately 
correct formula. For this purpose we notice that the function 
Cx(/) over a wide range of densities increases nearly as @1/4. 
It can further be useful to compute numerically some values of 
the expression (4.8) in the interval 0 < (l>/p0) < 1, where generally 
it is not allowed to put u = 0 in and f2. We find that, instead 
of (4.10), the following logarithmic term in (4.5) can be used 

where the constant is of the order 0.1—-0.05. The formula should 
be applicable in the density interval 0.02 < /2 < 1 but, because 
of the difference from the result for electrons at rest, (4.11) is 
less reliable than (4.9). According to (4.7) and (4.11), the 
function L is both for high and low velocities a function of the 
argument 2 nm2//! co0, at least in the first approximation. This 
result can be of convenience in the handling of more involved 
problems (Lindhard and Scharff, 1953).



42 Nr. 8

We have supposed above that it is allowed to use a pertur­
bation treatment, even for quite low velocities of the particle. 
However, when p is sufficiently low—of the order z±e2/h—there 
enters the new feature of capture and loss of electrons, and the 
particle will carry electrons which to some extent screen the field 
around it. For this and other reasons it is assumed, usually, that 
a perturbation treatment is applicable only when i> > z^/lï (cf., 
e.g., Bethe and Livingston, 1937). Nevertheless, the present type 
of perturbation method is not much in error even for lower values 
of p. In connection with this point it is of importance to notice, 
first, that in a treatment of the present kind there is actually a 
screening of the field and an inclusion of capture and loss in 
so far as such effects can be contained in linear field equations. 
Moreover, the crucial entity in the collisions is the relative velocity, 
which for low i> is given by the electron velocities in the system, 
and not by the much smaller quantity v. 'fliese remarks are of 
course not limited to a free gas of electrons, but apply for atomic 
systems in general.

If one regards the stopping problem from a frame of reference 
moving with the particle, the formulae (4.10) and (4.11) give 
the loss of momentum per unit time of an electron gas streaming, 
with uniform velocity p, past a point charge zte. One may there­
fore make a comparison between the stopping of a slow particle 
and calculations of residual resistance, and since in the latter 
case the rate of momentum loss is proportional to the electric 
current according to Ohm’s law, the proportionality to p in (4.10) 
is not accidental. More quantitatively, if in this formula one 
allows a reduction to the semi-classical approximation, i.e. 
/i(0, z) — /i(0, 0), there is complete equivalence to a familiar 
formula for the resistance as caused by foreign scattering centres 
in a metal.*  The approximate empirical justification of the re­
sistance formula, both as regards proportionality to • p and as 
to absolute values, will again show that for low p it is not un­
justified to apply a perturbation approach in the stopping problem.

* Cf., for instance, Mott and Jones: Properties of Metals and Alloys, Oxford 
University Press 1936, p. 294. The approximation used there is of a similar kind 
as that of Fermi and Teller (1947).

In the considerations in the previous sections, the damping 
of the electronic motion by resistance was introduced in a most 
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cursory manner. The above remarks on one aspect of the re­
sistance problem will give an indication as to how the resistance 
results from the dielectric constant in a linear field equation.

Straggling.
The straggling in energy loss provides an example of the 

direct application of equation (1.14). We consider, as before, a 
heavy particle moving through the system. It is then possible 
to find the probability of absorption of quanta /ico, by use of 
(1.14), (1.4), (4.1), and (4.2).

We shall not enter on details of the problem and only compute 
the straggling for the case where the particle has penetrated a 
distance through the system sufficient to ensure that the distri­
bution around the average is nearly Gaussian. For this case the 
standard deviation, 12, in the distribution in energy loss is de­
termined by the equation

QC

£>2 = <(dE)2> —<c/E>2 = Ucop(co)/l2co2, (4.12)
•'o

where p(a>)da> is the differential probability for energy transfer 
tico, flic formula (4.12) gives the fluctuation for the limit where 
Bose-Einstein statistics reduces to Boltzmann statistics, i. c. 
when field quanta are only rarely excited. Therefore, equation 
(4.3) corresponds to the straggling

71ÍV (4.13)

As before, we consider first the case where the electrons in the 
gas are initially at rest. One then introduces (3.4) in (4.13); we 
shall quote the resulting expression only in two limiting cases. 
For high velocities is obtained the well-known formula

ß2 = 4 % p d/i, (4.14)

where relativistic corrections are omitted. Usually, the relativistic 
correction is a multiplication by the factor (1 —p2/2c2)/(l —u2/c2), 
of. (3.21). It is often simpler, instead of the absolute value of
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the straggling, to give the relative value LE/dE. When (4.14) holds 
we find Q2[dE = inid/L. In the extreme of low velocities of the 
particle, which, however, according to (4.6) must obey 
/up2//! co0 > 1, the relative straggling can easily be shown to 
approach a minimum value

0.15)

determined by La>0, the lowest possible energy transfer to the gas. 
For a degenerate Fermi gas one gets of course the result (4.14) 

for high velocities v. For low velocities we quote the formula 
corresponding to (4.10). We introduce (3.5) in (4.13) and obtain

Ed — 4 n z2 e4 o dR ■ Lq,

z4 dz f, (u, z)  
71(iO’))a+(z2/,2(iO-))2’

(4.16)

Next, u is put equal to zero in fx and f.2 in the denominator. On 
account of (3.8), Lq then takes the simpler form 

(4.17)

showing that for low velocities the straggling, Q2, behaves as id. 
As in (4.10) the integral in (4.17) may be approximated by a 
simple function. Over a wide region of densities it is found that 
Lq is nearly proportional to q~ , and dividing by (4.11) the 
following estimate of the relative straggling is obtained for low 
velocities

p2 1
= (5 nil)2 ■ îiœ0)'\ (4.18)

As was to be expected, the individual energy transfers can thus 
be interpreted as the velocity v of the particle times an effective 
momentum of the electrons.
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Multiple scattering.
A problem similar to straggling in energy loss is the multiple 

scattering of the particle. Il is well known that the major con­
tribution to the multiple scattering arises from collisions with the 
atomic nuclei of the substance, because they can have charges 
high compared with the electron charge. Still, let us briefly 
resume the results for the multiple scattering contributed by the 
gas of electrons. The mean of the square of the total angle of 
deflection of the particle, ^2, can be found by summing the 
squares of the individual momentum transfers perpendicular to 
the path, and dividing by the momentum squared of the particle. 
The general formula for the multiple scattering is then

(4.19)

if all angles entering in the formula are small. We apply here 
the present expressions for the dielectric constant, where the 
effect of the atomic nuclei is omitted. When evaluating (4.19) 
for high velocity of the particle, using either (3.4) or (3.5), we 
find that yi2 behaves similarly as the energy loss, but the distant 
collisions, i. e. the resonance collisions, will now be suppressed. 
One shows easily that

in dE
ÄI 2 E’ (4.20)

where 1Í = Mv2/2 is the energy of the particle. In the limit of 
low velocities the dielectric constant (3.5) — (3.8) may be used. 
With the same approximation as in (4.17) it is seen that here

(4.21)

Width of states.
The width of the particle states, F, we introduce as h limes 

the previously mentioned transition probability per unit lime,
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jCV
(4.22)

and a similar expression results for the transverse field. It is 
interesting that the width is a classical property, in the sense that 
(4.22) does not depend directly on /?.

For high velocities we get, from (3.4) and (4.22),

(4.23)

For low velocities, in a Fermi gas, (3.5) leads to

Self-energy.
The self-energy of a charged particle is closely connected 

with its energy loss. The self-energy may be found from the 
energy density of the lield in equation (1.11); in order to obtain 
the self-energy due to the medium we must subtract the self­
energy in vacuum. In so far as the recoil of the source can be 
neglected a calculation of the self-energy is straightforward, since 
the fields arc immediately given. We consider the longitudinal 
contribution, which alternatively may be found as one half of 
the potential at the position of the particle. Introducing the 
source density (4.1), as corresponding to a point charge with 
velocity V, we perform a calculation similar to that resulting in 
(4.3) and obtain the following expression for the self-energy 

(4.25)

where the mass M of the particle should be large.
The expression (4.25) is quite similar to that describing the 

energy loss, (4.3), or the transition probability to other slates. 
We may, in fact, combine the two in one formula for the complex 
self-energy, LT,
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(4.26)

where Ff Pi is the previously deduced transition probability. 
Further, elc (k, co) represents el (k, co) for co > 0, and £**  (/c, co) 
for co < 0. We note that the transverse analogue of (4.26) may 
be derived directly from (4.4).

For high velocities we get from (4.25) and (3.4) the simple 
result

(4-27)

leading to quite small values when u is large. The contributions 
to (4.27) arise from polarization at distances about equal to the 
adiabatic impact parameter, v/co^, and not from the very small 
probability of carrying an electron. Similarly, if the particle is 
at rest, or moving slowly, we can for a degenerate gas employ 
the dielectric constant (3.5), (3.6) and obtain

u

where (u, z) is given by (3.7) and the integral, accordingly, 
is about equal to zt¡2%. Thus, we have found an approximate 
expression for the binding of, e. g., a proton in the gas. In the 
semi-classical limit one finds for the self-energy, to second 
power in the velocity of the particle,

One may attempt to improve eq. (4.26) by including the 
recoil of the particle. Since in (4.26) the frequency co is given 
by Pico = Pik-n — Ap • (ßE/dp), it would seem natural in quantum 
theory simply to replace Pi a) by Pik-p/m + Pi2k2¡2 m. The proper 
formula is, however, slightly more complicated. In the Appendix 
is derived the term to be added to the free particle Hamiltonian 
in the wave equation (cf. (A. 12)).
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§ 5. Discussion of the approximation method.

In the calculations of the dielectric constants in § 2 and § 3, 
to first order in e2, it was assumed that the electrons may be 
regarded as freely moving particles. This assumption is a central 
one in the Sommerfeld theory as well as in the Thomas-Fermi 
model. We shall discuss in how far the first order field equation, 
starting from free particles, is a good approximation to the 
correct field equations. Our treatment of this question is based 
on the pictorial semi-classical ideas. We consider two charac­
teristic quantities; first, the self-energy as implying a momentum­
energy relation different from that of a free particle, and second, 
the damping of motion of a single particle, giving rise to an 
uncertainty in its energy. The smallness of both damping and 
self-energy is a sufficient condition for the use of the first order 
approximation.

But let us first mention one simple argument showing a 
peculiar self-contained feature of the first order treatment. We 
notice that the semi-classical first order equations in § 2 depend 
only on the charge density cq, on the ratio e/m, and on the 
particle velocities — pt/m. The distribution of particles of 
finite charge can thus be replaced by a continuum distribution 
having the same mass and charge density and the same velocity 
distribution, with the result that the first order equations remain 
unchanged. However, since the interaction of a charge with 
itself is at least proportional to the charge squared, all self­
energies can be neglected in the continuum description, where 
charges may be considered infinitesimal, and the first order 
equations of § 2 become classically exact. This consideration 
makes apparent a most important feature of the field equations 
calculated: the first order perturbation treatment can be accurate, 
and at the same time the resulting induced field is by no means 
a small quantity.

Returning to an actual gas of particles, let us first explain 
what we mean by a self-consistent treatment in the semi-classical 
approximation. In § 2 we deduced the dielectric constants, the 
approximation being that the wavelengths of the electrons were 
very small compared to those of the field. On this assumption 
all contributions were found to arise from electrons at the surface
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of the distribution in momentum space, with velocity v0 and 
momentum p0. We made a distinction between mv0 and p0, 
although they were equal in calculations to first order in e2. In 
a more accurate classical treatment the only change is that nip 
dillers from p. We now assume that, for a given electron 
density, the electrons occupy all states below the momentum 
p0 = (3 -h, with none above. This gives in any case a 
well-defined approximation to classical self-consistent equations. 
Since the contributions arise only from the surface of the distri­
bution, our description involves merely one new quantity

iiw0 mdE 
Po Po8P (5.1)a
Po P = Po

E being the energy of the electron.

This description can be applied when excitations involve states in 
the neighbourhood of the Fermi surface. Therefore, it can be used even 
in the quantum mechanical calculation in § 3, but only for fields of 
long wavelength and low frequency. In fact, if we define an effective 
electron mass as m*  = polvo = m/ct, we merely need - in the formulae 
in § 2 and § 3 - replace throughout m by m*  ; this should be done in 
a>2 and X2, too. It is seen that then we obtain, e. g., the well-known 
dependence of spin paramagnetism and orbital diamagnetism (pp. 23 and 
34) on effective electron mass. Further, while m*  refers to slowly vary­
ing fields, the opposite case of very large wave vectors and frequencies 
is accurately described by the uncorrected dielectric constants in § 3.

The energy E is the sum of the kinetic energy mv2/2 and the 
self-energy u, given by (4.25). In order to bring oui the essential 
features we now simplify the description. We can write ap­
proximately, for not too high velocities, u (p) = n0 + U2'V2l2i\}, 
as in eq. (4.29). It is then found from (5.1) and (4.29) that a 
is determined by 

where C = (tc/3)-(1 — tt2/1 6) . The previously introduced quantity 
/2 = me2 ¡ti ft p0 is thus a measure of the applicability of the free 
electron picture and the first order field equations.! The depend-

f In I.iNDiiARD (1946), eq. (25), a somewhat different consideration led to 
X2 < 1 as the condition for the validity of the first order semi-classical picture.

Dan. Mat. Fys.Medd. 28, no.8. 4 
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ence on /3 in (5.2) is not due to the simplifying assumptions 
made as regards the self-energy, but holds accurately in the semi- 
classical picture as long as a is close to unity; a numerical com­
putation shows that C is very nearly 0.5. Clearly, « is close to 
unity in dense gases, and for densities corresponding to electrons 
in metals « is slightly smaller than 1. For gases of low densities 
the approximations made are apparently not justified.

For a dilute gas in temperature equilibrium, we may similarly 
ask for the limit of applicability of the free electron picture, and 
of the Maxwell velocity distribution. Since, in the description of 
such gases, Planck’s constant does not enter, the parameter charac­
terizing the gas is, instead of %2, a quantity proportional to 

which just corresponds to the ratio between the binding energy 
and the temperature energy. It may here be recalled that the 
held equations for a Boltzmann gas were found roughly to 
correspond to those of a degenerate gas, only n0 being replaced 
by the temperature velocity of the particles. On the same lines as 
above we then find an equation for a similar to (5.2), but with 
/f instead of /2. Thus, the simple Maxwell distribution is only 
valid for /j small compared to unity.

Mention may be made of the curious case of a one-dimensional 
degenerate gas, where the first order semi-classical dielectric constant 
was found to be e = 1—co2/(co2— c2 A’2). The contributions to e arise 
from particles at the surface of the distribution in momentum space, 
and the field surrounding such particles moving with constant velocity 
vu has non-zero Fourier components only for co = ±vok. For this self­
field e is infinite, so that the self-energy and its derivative with respect 
to momentum vanishes. Thus, we have proved that the first order 
treatment is semi-classically exact, in agreement with the result of 
Tomonaga (1950).

So far the ratio « and the momenta were considered, for 
simplicity, as real quantities. However, we found earlier a 
damping of motion, by no means negligible compared to the 
self-energy. Let us regard the resulting effect in the case of %2 
small, so that the free particle picture is approximately valid.
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The imaginary part, F/2, °f the energy is then given semi- 
classically by eq. (4.26). If again we use the estimate asymp­
totically valid for low velocities, we get according to (4.24) pro­
portionality between F and the velocity of the particle; the 
corresponding complex momentum has an imaginary part equal 
to the constant (tt/8)-(me1 2/A)/. Accordingly, a is approximately 
given by

1
/ T

independent of the

It is, perhaps, not without interest to make here a quali­
tative comparison with atomic nuclei. Indeed, in spite of the 
differences between electromagnetic and mesonic couplings, the

t The resulting improved dielectric constants are of the causal type, where 
the imaginary part does not change sign with to. The causal dielectric constants 
are particularly convenient in higher order treatments.

By introducing in the transverse dielectric constant the effect of the self­
energy, as expressed by «, we observe that the term i (3 tico^/4 coZco0) • (nw0/p0) in 
(2.7) remains unaffected. This result is important in the so-called anomalous skin 
effect, which is governed just by the mentioned term (cf. II).

4*

« = 1 —(5.4)

In the present limit of a ~ 1 we could of course easily get estimates 
more accurate than (5.4). In this connection we note that F, 
while rising at first linearly with the velocity, will reach a maximum 
for energies somewhat above the top of the Fermi distribution. 
For still higher energies F decreases slowly towards zero. 
The value of the imaginary part of (5.4) is only an ap­
proximate estimate, due to the simplifying assumptions made; 
but the dependence on /3 has general validity in the semi-clas­
sical approximation.

For a finite imaginary part of a some interesting conse­
quences result in the formulae, as (2.4), for the dielectric con­
stants, where then is to be replaced byap0/m — ah (3%2¿>) 3//n.f 
For instance, for long wavelengths, where a phenomenon similar 
to mesons is observed (cf. p. 25), the inclusion of the imaginary 
part of (5.4) implies a width of the states of the field quanta, 
corresponding to a 
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general features of the results obtained above should also apply 
for a system of nucleons. One will expect the appearance of com­
plex self-energies of the nucleons, of similar type as found above. 
The semi-empirical proposal by Feshbach et al. (1953) may be 
regarded as a simplified description of such kind, although it 
will be evident that both the real and imaginary parts of the 
self-energy must vary with particle excitation.

The considerations in this paragraph and in § 4, aiming at 
improved electromagnetic field equations, at the same lime give 
improved equations for the particle field. The latter equations 
are also of the type of Maxwell’s equations in matter, in being 
of high order, and involving polarization and absorption effects, 
fhe equations for the electromagnetic field are important for the 
dynamics of the system, e. g. in the case of interaction with 
external charges. The equations for the particle field are useful 
for instance when a particle, identical with those in the gas, 
enters the system from the outside. In general, the particle 
equations are of importance when one is able to discern ap­
proximately the motion of one, or a few, individual particles.

Stimm ary.
The paper treats the behaviour of a gas of charged particles, 

preferably a degenerate gas. It is pointed out that the dynamic 
properties of this system are contained in equations for the 
electromagnetic field merely, of type of Maxwell’s equations in 
matter. By the field is meant, classically, the field induced by 
and acting on external, classical charges. A systematic treatment 
on this basis implies great simplifications in the theory.

The interpretation of general field equations is discussed, and 
the manner in which they account for absorption processes. The 
dielectric constants, defining linear field equations, are computed 
in a number of cases, to first and higher order in e2, using both 
classical and quantum description of the particle motion. As a 
demonstration of the method is treated energy dissipation by a 
charged particle moving through the system, and its self-energy. 
Further is discussed self-consistent field equations, and the 
improved electronic equations of motion.
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Appendix.
Improved particle field equations.

In § 4 was deduced, classically, the self-energy and damping 
of motion of a charged particle moving in a field obeying the 
equation

Zl e 0 = — 4 n f?0, (A. 1 )

where the operator e is the longitudinal dielectric constant. We 
shall now derive the corresponding quantum effect, to first order 
in e2. In this way one gets an improved equation for the particle 
field, of similar type as the equation for the electromagnetic 
field, (A. 1). In the derivation we employ a technique more 
advanced than that used for the deduction of the equation (A. 1) 
in § 3. Still, the calculation will not be performed in the least 
cumbersome manner, but is hoped to be the more illustrative 
as regards the effects involved.

The field equation for the particle is taken to be the non- 
relativistic one,

I + - - A I ip = e<t>ip, (A. 2)
\ of 2 in /

and at the same time we introduce Qo — e ip*ip  in (A. 1). The 
equations (A. 1), (A. 2) are conveniently written on integral form
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(a*)  = ipul (,r) — e $ 5/{ (o? — af) 0 (af) ip (af) dx',

0 (a-) = øin (,r) + e J I)n(x — a-') ^:f: (af) y (af) dx',

Nr. 8

(A. 3)

(A. 4)

where ,r stands for (x, y, z, t). Moreover, (,r—x') is the retarded 
solution of (A. 2) when the right side of the equation is replaced 
by —d (a?—x'); J)l{ (x—x) is the analogous solution of (A. 1) 
with a source —4 nô (x—x') on the right. The incoming fields 
ipin and 0”1 are solutions of the uncoupled equations.

The coupled equations result in a scattering of the particle, 
which we calculate to second order from a series development 
in (A. 3) and (A. 4). For the outgoing field we find

V°ut (.r) = yf" (,r) + e $ 5 (ar - x') <Pin (x) y>in (x') dx' 

+ e2 5$ dx' dx" S (x - x') ■ I)R (x' - x") y>* in (x") y>in (x") y>in (x')

- e2 $¡¡ dx' dx" S (x — af) (af — x") <Pin (x') <Pin (x") y>in (x"),

(A-

where N = SA — SI{.
Consider the vacuum expectation value of y>*' n (ay) y°"z(.r), 

which quantity can serve to characterize the scattering. The first 
order term in e is seen to vanish for symmetry reasons, and we 
get to second order

<0 I y>* in (ay) yfu'(.r)| ()> = <() | y* in (ay) y>in (,r)| ()>
- e2 ÿ dx' dx" S (a: — a-') { I)l{ (x' — x") <0 | y>* in (x") y>in (x') | ()> 

+ SJ{ (x' — x") <0 I 0in (af) 0in (x") I 0 > } <0 I y,*" 1 (xy) yf" (x") | ()> .

(A.

In this equation we introduce

<()| yf* ,n(af')y/n(af)| ()> = — 0 5 (a-' —a-"), (A. 7)

according to ordinary field quantization; the function <S~ is the 
negative frequency part of 5. As to the electromagnetic field the 
method of quantization of Peierls (1952), establishing the 
general connection with the Green’s functions of the field equations, 
leads to

< 0 I 0in (af) 0'" (af') I 0 > = ih D+ (af — x"). (A. 8)
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We wish to eliminate the coupling with the electromagnetic 
field and attempt to replace it by a new term in the particle 
field equation

z/1 A | y (x) + J K (x — x')ip (x') dx' = 0. (A. 9)

The above scattering is obtained if, according to (A. 6), (A. 7), 
and (A. 8), K is of the form

K (x) = ze2 h (—DR (x) • S ~(x) + (x) • /J1 (x)). (A. 10)

It can be convenient to write this formula in terms of Z)c and Sc, 
defined by = — 2 z7) +/)(1). To this purpose we note that 
the expression — I)R (x) S (x) + (x) 1)+ (x) is equal to

(- i/2) { />" (.t) .S'" (t) + />'" O) SB (,r) I.

and a simple manipulation leads to

K(x)=|e2/iSc(x)Dc(x), (A. 11)
4

the equation holding only for the positive frequency part of the 
Held, which is usually sufficient, since the incoming particle has 
positive energy. Substituting (A. 10) or (A. 11) for K in (A. 9) 
an improved equation for the particle field is obtained. For 
a Fourier component of the particle wave proportional to 
exp (ik • r—iot) the extra term in the field equation—-which 
could be called a self-energy of the particle—is accordingly

where we have subtracted the vacuum term with e — 1 ; further 
ec (k, co) = £ (Â-, I a» I ) and Ó is a vanishing positive quantity. 
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In eq. (A. 12) we have of course in first approximation the 
connection co = hk2/2 in if the particle energy is approximately 
that of a freely moving particle.

When the mass in, is large, and for a given particle velocity 
V = kk/in, the formula (A. 12) reduces to the semi-classical 
one, (4.26).

The above derivation of linear particle field equations from 
general linear electromagnetic field equations owes its feasibi­
lity and simplicity to the use of the quantization rule (A. 8). 
Evidently, one may give, on the same lines, a derivation of the 
electromagnetic field equations from general particle equations, 
and thus obtain mutually consistent equations for the two fields. 
In the text, this was performed, quantum mechanically, for free 
particles, but also for a more general case when only long waves 
or low frequencies were important.
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